sénie nº17

Exercice N°1

Chaque question ci-dessous comporte trois réponses possibles. Pour chacune de ces questions, une seule des réponses proposées est exacte. On demande de choisir cette réponse.

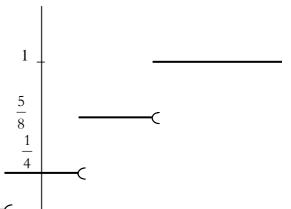
Soit X la variable aléatoire dont la loi de probabilité est définie par le tableau suivant :

X _i	0	1	2	3	4	5	6
$P(X=x_i)$	0,3	0,2	0,15	0,15	0,1	P	Р

Sachant que P(X=5)=P(X=6), alors

a)
$$P = 0.05$$

b)
$$P = 0.2$$


c)
$$P = 0.5$$

2/ Soit X une variable aléatoire dont sa fonction de répartition F est donné par le graphe ci-dessous alors

a)	p(X	=1)=	$\frac{5}{8}$.
----	-----	------	-----------------

b)
$$p(X = 1) = \frac{1}{4}$$

c)
$$p(X = 1) = \frac{3}{8}$$

3

3/ Soit U la suite définie sur \square par $U_n = \ln(\frac{e \cdot n + 1}{n + 1})$ on alors :

a)
$$\lim_{n \to +\infty} U_n = 0$$

b)
$$\lim_{n \to +\infty} U_n = 1$$

c)
$$\lim_{n\to+\infty} U_n = +\infty$$

Exercice N°2

Soit U la suite définie par $\begin{cases} U_0 = 2 \\ U_{n+1} = 2U_n + 2n - 1 \text{ pour tout } n \in \square \end{cases}$

1/a) Calculer U₁ et U₂

b) Justifier alors que la suite U n'est ni arithmétique ni géométrique

2/ Soit V la suite définie sur \square par : $V_n = U_n + 2n + 1$

a) Montrer que V est une suite géométrique de raison 2

b) Exprimer V_n et U_n en fonction de n

c) Calculer la limite de la suite V

Exercice N°3

Un appareil de mesure évalue l'épaisseur (en cm) de pièces mécaniques. L'expérience prouve que l'épaisseur d'une pièce peut être modélisée par une variable aléatoire X qui suit la loi uniforme dans l'intervalle [0,1] 1/ Calculer P(X = 0,6) et $P(0,3 \le X \le 0,5)$

2/ Les pièces sont acceptées si l'épaisseur est supérieur à 0,6 cm.

Quelle est la probabilité qu'une pièce soit acceptée ?

3/ Une pièce a une épaisseur supérieur à 0,3. Quelle est la probabilité qu'elle soit acceptée ?

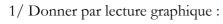
Exercice N°4

Une usine fabrique en grande série de climatiseurs susceptibles de présenter deux défauts a et b . Une étude statistique de la production conduit aux résultats suivants :

- 3% des climatiseurs présentant le défaut a.
- Parmi les climatiseurs présentant le défaut a, 8% présentent le défaut b
- Parmi les climatiseurs ne présentant pas le défaut a, 2% présentent le défaut b

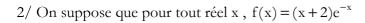
On prélève au hasard un climatiseur dans la production. On désigne par A et B les évènements suivants :

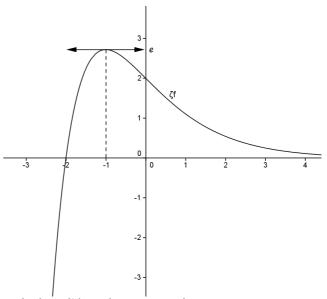
A « Le climatiseur présente le défaut a »


- B « Le climatiseur présente le défaut b »
- 1/ L'arbre pondéré ci-contre représente cette situation. Recopier et compléter cet arbre.
- 2/ Pour cette question, on donnera les résultats à $10^{-3}\,$ prés
 - a) Quelle est la probabilité que ce climatiseur présente à la fois les deux défauts a et b ?
 - b) Quelle est la probabilité que ce climatiseur présente le défaut b?
- c) Quelle est la probabilité que ce climatiseur ne présente aucun défaut ?
- d) Sachant que ce climatiseur présente le défaut b, quelle est la probabilité qu'il présente le défaut a ?
- 3/ La durée de vie d'un climatiseur avant qu'il subisse la première panne exprimée en année est une variable aléatoire X définie sur $[0,+\infty[$ suit la loi exponentielle de paramètre $\lambda=0.02$
- a) Quelle est la probabilité qu'un climatiseur dure moins de 8 ans ?
- b) Quelle est la probabilité qu'un climatiseur dure plus de 5 ans ?
- c) Quelle est la probabilité qu'un climatiseur dure moins de 8 ans, sachant qu'il fonctionne depuis 5 ans ?

Exercice N°5

Dans le graphique ci-dessous est représentée dans un repère orthonormé, la courbe ζ_f d'une fonction f définie sur \Box


- ζ_f admet une branche parabolique de direction l'axe des ordonnées au voisinage de $(-\infty)$
- La droite (T) d'équation y= e est la tangente à ζ_f au point d'abscisse 1


a)
$$f(-2)$$
; $f(0)$ et $f'(-1)$

b)
$$\lim_{x \to +\infty} f(x)$$
; $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

c) Le signe de f(x) suivant les valeurs de x.

a) Calculer f'(x) et vérifier que $f(x) = e^{-x} - f'(x)$

b) En déduire l'aire du domaine limité par la courbe
$$\zeta$$
, les droites d'équations respectives $x=-2$; $x=0$ et $y=0$